MakeItFrom.com
Menu (ESC)

ASTM Grade HE Steel vs. S31100 Stainless Steel

Both ASTM grade HE steel and S31100 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HE steel and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
270
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 10
4.5
Fatigue Strength, MPa 160
330
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 79
79
Tensile Strength: Ultimate (UTS), MPa 670
1000
Tensile Strength: Yield (Proof), MPa 310
710

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 450
470
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 14
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
16
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.5
3.1
Embodied Energy, MJ/kg 50
44
Embodied Water, L/kg 190
170

Common Calculations

PREN (Pitting Resistance) 29
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
40
Resilience: Unit (Modulus of Resilience), kJ/m3 240
1240
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
36
Strength to Weight: Bending, points 22
29
Thermal Diffusivity, mm2/s 3.6
4.2
Thermal Shock Resistance, points 14
28

Alloy Composition

Carbon (C), % 0.2 to 0.5
0 to 0.060
Chromium (Cr), % 26 to 30
25 to 27
Iron (Fe), % 53.9 to 65.8
63.6 to 69
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 8.0 to 11
6.0 to 7.0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
0 to 0.25