MakeItFrom.com
Menu (ESC)

AWS E100C-K3 vs. EN 1.4021 Stainless Steel

Both AWS E100C-K3 and EN 1.4021 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E100C-K3 and the bottom bar is EN 1.4021 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
11 to 17
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 770
630 to 880
Tensile Strength: Yield (Proof), MPa 700
390 to 670

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 48
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.7
1.9
Embodied Energy, MJ/kg 23
27
Embodied Water, L/kg 53
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
400 to 1160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 27
23 to 31
Strength to Weight: Bending, points 24
21 to 26
Thermal Diffusivity, mm2/s 13
8.1
Thermal Shock Resistance, points 23
22 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0.16 to 0.25
Chromium (Cr), % 0 to 0.15
12 to 14
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 92.6 to 98.5
83.2 to 87.8
Manganese (Mn), % 0.75 to 2.3
0 to 1.5
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.015
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0