MakeItFrom.com
Menu (ESC)

AWS E409Nb vs. EN 1.4590 Stainless Steel

Both AWS E409Nb and EN 1.4590 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E409Nb and the bottom bar is EN 1.4590 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
26
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Tensile Strength: Ultimate (UTS), MPa 500
480
Tensile Strength: Yield (Proof), MPa 380
270

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
26
Thermal Expansion, µm/m-K 14
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.9
2.5
Embodied Energy, MJ/kg 42
37
Embodied Water, L/kg 100
120

Common Calculations

PREN (Pitting Resistance) 14
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 380
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 6.8
7.0
Thermal Shock Resistance, points 14
17

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 11 to 14
16 to 17.5
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 80.2 to 88.5
79.7 to 83.7
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.6
0
Niobium (Nb), % 0.5 to 1.5
0.35 to 0.55
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Zirconium (Zr), % 0
0 to 0.15