MakeItFrom.com
Menu (ESC)

AWS ER120S-1 vs. EN 2.4668 Nickel

AWS ER120S-1 belongs to the iron alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER120S-1 and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
14
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 930
1390
Tensile Strength: Yield (Proof), MPa 830
1160

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 46
13
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
75
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.9
13
Embodied Energy, MJ/kg 25
190
Embodied Water, L/kg 56
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1850
3490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 33
46
Strength to Weight: Bending, points 27
33
Thermal Diffusivity, mm2/s 13
3.5
Thermal Shock Resistance, points 27
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0 to 0.1
0.020 to 0.080
Chromium (Cr), % 0 to 0.6
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 92.4 to 96.1
11.2 to 24.6
Manganese (Mn), % 1.4 to 1.8
0 to 0.35
Molybdenum (Mo), % 0.3 to 0.65
2.8 to 3.3
Nickel (Ni), % 2.0 to 2.8
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0 to 0.010
0 to 0.015
Silicon (Si), % 0.25 to 0.6
0 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.1
0.6 to 1.2
Vanadium (V), % 0 to 0.030
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0