MakeItFrom.com
Menu (ESC)

Annealed AISI 420 vs. EN 1.4923 +A Steel

Both annealed AISI 420 and EN 1.4923 +A steel are iron alloys. Both are furnished in the annealed condition. They have a very high 98% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is annealed AISI 420 and the bottom bar is EN 1.4923 +A steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
270
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 15
21
Fatigue Strength, MPa 220
300
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 420
540
Tensile Strength: Ultimate (UTS), MPa 690
870
Tensile Strength: Yield (Proof), MPa 380
470

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 390
380
Maximum Temperature: Mechanical, °C 620
740
Melting Completion (Liquidus), °C 1510
1450
Melting Onset (Solidus), °C 1450
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 27
24
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
8.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
2.9
Embodied Energy, MJ/kg 28
41
Embodied Water, L/kg 100
100

Common Calculations

PREN (Pitting Resistance) 14
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 88
150
Resilience: Unit (Modulus of Resilience), kJ/m3 380
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
31
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 7.3
6.5
Thermal Shock Resistance, points 25
30

Alloy Composition

Carbon (C), % 0.15 to 0.4
0.18 to 0.24
Chromium (Cr), % 12 to 14
11 to 12.5
Iron (Fe), % 82.3 to 87.9
83.5 to 87.1
Manganese (Mn), % 0 to 1.0
0.4 to 0.9
Molybdenum (Mo), % 0 to 0.5
0.8 to 1.2
Nickel (Ni), % 0 to 0.75
0.3 to 0.8
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0
0.25 to 0.35