MakeItFrom.com
Menu (ESC)

EN 1.0259 Steel vs. AISI 415 Stainless Steel

Both EN 1.0259 steel and AISI 415 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.0259 steel and the bottom bar is AISI 415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
260
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
17
Fatigue Strength, MPa 200
430
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 310
550
Tensile Strength: Ultimate (UTS), MPa 490
900
Tensile Strength: Yield (Proof), MPa 280
700

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
780
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
24
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
11
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
2.5
Embodied Energy, MJ/kg 19
35
Embodied Water, L/kg 49
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
140
Resilience: Unit (Modulus of Resilience), kJ/m3 210
1250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17
32
Strength to Weight: Bending, points 18
26
Thermal Diffusivity, mm2/s 13
6.4
Thermal Shock Resistance, points 15
33

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0
Carbon (C), % 0 to 0.2
0 to 0.050
Chromium (Cr), % 0 to 0.3
11.5 to 14
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.7 to 99.98
77.8 to 84
Manganese (Mn), % 0 to 1.4
0.5 to 1.0
Molybdenum (Mo), % 0 to 0.080
0.5 to 1.0
Nickel (Ni), % 0 to 0.3
3.5 to 5.5
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0