MakeItFrom.com
Menu (ESC)

EN 1.0308 Steel vs. EN 1.1106 Steel

Both EN 1.0308 steel and EN 1.1106 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0308 steel and the bottom bar is EN 1.1106 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 130
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 7.8 to 28
24
Fatigue Strength, MPa 140 to 200
270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 230 to 260
350
Tensile Strength: Ultimate (UTS), MPa 360 to 440
550
Tensile Strength: Yield (Proof), MPa 190 to 340
370

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
50
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.3
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.6
Embodied Energy, MJ/kg 18
22
Embodied Water, L/kg 46
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 95
120
Resilience: Unit (Modulus of Resilience), kJ/m3 93 to 300
360
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 13 to 16
19
Strength to Weight: Bending, points 14 to 16
19
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 11 to 14
17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.17
0 to 0.18
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 98.2 to 100
96.2 to 98.9
Manganese (Mn), % 0 to 1.2
1.1 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.1