MakeItFrom.com
Menu (ESC)

EN 1.0503 Steel vs. AWS E80C-Ni3

Both EN 1.0503 steel and AWS E80C-Ni3 are iron alloys. They have a very high 96% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.0503 steel and the bottom bar is AWS E80C-Ni3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
27
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
72
Tensile Strength: Ultimate (UTS), MPa 630
630
Tensile Strength: Yield (Proof), MPa 310
530

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
51
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
3.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.7
Embodied Energy, MJ/kg 19
23
Embodied Water, L/kg 47
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
160
Resilience: Unit (Modulus of Resilience), kJ/m3 260
740
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
22
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 20
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.42 to 0.5
0 to 0.12
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 97.3 to 99.08
92.8 to 97.3
Manganese (Mn), % 0.5 to 0.8
0 to 1.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
2.8 to 3.8
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.9
Sulfur (S), % 0 to 0.045
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5