MakeItFrom.com
Menu (ESC)

EN 1.1131 Cast Steel vs. EN 1.5681 Steel

Both EN 1.1131 cast steel and EN 1.5681 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.1131 cast steel and the bottom bar is EN 1.5681 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
20
Fatigue Strength, MPa 200
300
Impact Strength: V-Notched Charpy, J 78
110
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 530
630
Tensile Strength: Yield (Proof), MPa 270
430

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
48
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
5.0
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.9
Embodied Energy, MJ/kg 19
25
Embodied Water, L/kg 47
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 200
490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 17
19

Alloy Composition

Carbon (C), % 0.15 to 0.2
0.060 to 0.12
Iron (Fe), % 97.6 to 98.9
92.9 to 94.9
Manganese (Mn), % 1.0 to 1.6
0.5 to 0.8
Nickel (Ni), % 0
4.5 to 5.5
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.020