MakeItFrom.com
Menu (ESC)

EN 1.4565 Stainless Steel vs. S35140 Stainless Steel

Both EN 1.4565 stainless steel and S35140 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4565 stainless steel and the bottom bar is S35140 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 35
34
Fatigue Strength, MPa 380
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
78
Shear Strength, MPa 590
460
Tensile Strength: Ultimate (UTS), MPa 880
690
Tensile Strength: Yield (Proof), MPa 480
310

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 460
500
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1420
1420
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
14
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
31
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 5.4
5.5
Embodied Energy, MJ/kg 74
78
Embodied Water, L/kg 210
190

Common Calculations

PREN (Pitting Resistance) 47
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
190
Resilience: Unit (Modulus of Resilience), kJ/m3 550
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31
24
Strength to Weight: Bending, points 26
22
Thermal Diffusivity, mm2/s 3.2
3.7
Thermal Shock Resistance, points 21
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 24 to 26
20 to 22
Iron (Fe), % 41.2 to 50.7
44.1 to 52.7
Manganese (Mn), % 5.0 to 7.0
1.0 to 3.0
Molybdenum (Mo), % 4.0 to 5.0
1.0 to 2.0
Nickel (Ni), % 16 to 19
25 to 27
Niobium (Nb), % 0 to 0.15
0.25 to 0.75
Nitrogen (N), % 0.3 to 0.6
0.080 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030