MakeItFrom.com
Menu (ESC)

EN 1.4568 Stainless Steel vs. Grade 31 Titanium

EN 1.4568 stainless steel belongs to the iron alloys classification, while grade 31 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4568 stainless steel and the bottom bar is grade 31 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 2.3 to 21
20
Fatigue Strength, MPa 220 to 670
300
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Shear Strength, MPa 520 to 930
320
Tensile Strength: Ultimate (UTS), MPa 830 to 1620
510
Tensile Strength: Yield (Proof), MPa 330 to 1490
450

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 890
320
Melting Completion (Liquidus), °C 1420
1660
Melting Onset (Solidus), °C 1380
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.8
36
Embodied Energy, MJ/kg 40
600
Embodied Water, L/kg 140
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 140
99
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 5710
940
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 30 to 58
32
Strength to Weight: Bending, points 25 to 40
32
Thermal Diffusivity, mm2/s 4.3
8.5
Thermal Shock Resistance, points 23 to 46
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.7 to 1.5
0
Carbon (C), % 0 to 0.090
0 to 0.080
Chromium (Cr), % 16 to 18
0
Cobalt (Co), % 0
0.2 to 0.8
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 70.9 to 76.8
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
97.9 to 99.76
Residuals, % 0
0 to 0.4