MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. 2007 Aluminum

EN 1.4594 stainless steel belongs to the iron alloys classification, while 2007 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is 2007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 11 to 17
5.6 to 8.0
Fatigue Strength, MPa 490 to 620
91 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 620 to 700
220 to 250
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
370 to 420
Tensile Strength: Yield (Proof), MPa 810 to 1140
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 820
190
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
510
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
47
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.9
3.1
Embodied Carbon, kg CO2/kg material 3.2
8.0
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 130
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
390 to 530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
44
Strength to Weight: Axial, points 36 to 41
33 to 38
Strength to Weight: Bending, points 29 to 31
37 to 40
Thermal Diffusivity, mm2/s 4.4
48
Thermal Shock Resistance, points 34 to 39
16 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
87.5 to 95
Bismuth (Bi), % 0
0 to 0.2
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 13 to 15
0 to 0.1
Copper (Cu), % 1.2 to 2.0
3.3 to 4.6
Iron (Fe), % 72.6 to 79.5
0 to 0.8
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0
0.4 to 1.8
Manganese (Mn), % 0 to 1.0
0.5 to 1.0
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.0 to 6.0
0 to 0.2
Niobium (Nb), % 0.15 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0 to 0.8
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.3