MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. C43000 Brass

EN 1.4594 stainless steel belongs to the iron alloys classification, while C43000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 17
3.0 to 55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 620 to 700
230 to 410
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
320 to 710
Tensile Strength: Yield (Proof), MPa 810 to 1140
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 820
170
Melting Completion (Liquidus), °C 1450
1030
Melting Onset (Solidus), °C 1410
1000
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
28

Otherwise Unclassified Properties

Base Metal Price, % relative 15
29
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 3.2
2.8
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
82 to 1350
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 36 to 41
10 to 23
Strength to Weight: Bending, points 29 to 31
12 to 20
Thermal Diffusivity, mm2/s 4.4
36
Thermal Shock Resistance, points 34 to 39
11 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 1.2 to 2.0
84 to 87
Iron (Fe), % 72.6 to 79.5
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.0 to 6.0
0
Niobium (Nb), % 0.15 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.7 to 2.7
Zinc (Zn), % 0
9.7 to 14.3
Residuals, % 0
0 to 0.5