MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. C55180 Copper

EN 1.4594 stainless steel belongs to the iron alloys classification, while C55180 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is C55180 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 17
20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
200
Tensile Strength: Yield (Proof), MPa 810 to 1140
100

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 820
200
Melting Completion (Liquidus), °C 1450
920
Melting Onset (Solidus), °C 1410
710
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 16
200
Thermal Expansion, µm/m-K 11
17

Otherwise Unclassified Properties

Base Metal Price, % relative 15
29
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 3.2
2.5
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 130
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
34
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
48
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 36 to 41
6.4
Strength to Weight: Bending, points 29 to 31
8.8
Thermal Diffusivity, mm2/s 4.4
56
Thermal Shock Resistance, points 34 to 39
7.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 1.2 to 2.0
94.7 to 95.2
Iron (Fe), % 72.6 to 79.5
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.0 to 6.0
0
Niobium (Nb), % 0.15 to 0.6
0
Phosphorus (P), % 0 to 0.040
4.8 to 5.2
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.15