MakeItFrom.com
Menu (ESC)

EN 1.4594 Stainless Steel vs. C84100 Brass

EN 1.4594 stainless steel belongs to the iron alloys classification, while C84100 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4594 stainless steel and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11 to 17
13
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
39
Tensile Strength: Ultimate (UTS), MPa 1020 to 1170
230
Tensile Strength: Yield (Proof), MPa 810 to 1140
81

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 820
160
Melting Completion (Liquidus), °C 1450
1000
Melting Onset (Solidus), °C 1410
810
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
25

Otherwise Unclassified Properties

Base Metal Price, % relative 15
29
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 3.2
2.9
Embodied Energy, MJ/kg 45
48
Embodied Water, L/kg 130
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
24
Resilience: Unit (Modulus of Resilience), kJ/m3 1660 to 3320
30
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 36 to 41
7.4
Strength to Weight: Bending, points 29 to 31
9.7
Thermal Diffusivity, mm2/s 4.4
33
Thermal Shock Resistance, points 34 to 39
7.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 1.2 to 2.0
78 to 85
Iron (Fe), % 72.6 to 79.5
0 to 0.3
Lead (Pb), % 0
0.050 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.2 to 2.0
0
Nickel (Ni), % 5.0 to 6.0
0 to 0.5
Niobium (Nb), % 0.15 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 0.7
0 to 0.010
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 4.5
Zinc (Zn), % 0
12 to 20
Residuals, % 0
0 to 0.5