MakeItFrom.com
Menu (ESC)

EN 1.4931 Steel vs. AISI 403 Stainless Steel

Both EN 1.4931 steel and AISI 403 stainless steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4931 steel and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
16 to 25
Fatigue Strength, MPa 410
200 to 340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 810
530 to 780
Tensile Strength: Yield (Proof), MPa 620
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 600
740
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 24
28
Thermal Expansion, µm/m-K 14
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
6.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.9
Embodied Energy, MJ/kg 42
27
Embodied Water, L/kg 100
99

Common Calculations

PREN (Pitting Resistance) 16
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 970
210 to 840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 29
19 to 28
Strength to Weight: Bending, points 25
19 to 24
Thermal Diffusivity, mm2/s 6.5
7.6
Thermal Shock Resistance, points 22
20 to 29

Alloy Composition

Carbon (C), % 0.2 to 0.26
0 to 0.15
Chromium (Cr), % 11.3 to 12.2
11.5 to 13
Iron (Fe), % 83.2 to 86.8
84.7 to 88.5
Manganese (Mn), % 0.5 to 0.8
0 to 1.0
Molybdenum (Mo), % 1.0 to 1.2
0
Nickel (Ni), % 0 to 1.0
0 to 0.6
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0.25 to 0.35
0