MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. EN AC-46500 Aluminum

EN 1.4938 stainless steel belongs to the iron alloys classification, while EN AC-46500 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 16 to 17
1.0
Fatigue Strength, MPa 390 to 520
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
270
Tensile Strength: Yield (Proof), MPa 640 to 870
160

Thermal Properties

Latent Heat of Fusion, J/g 270
520
Maximum Temperature: Mechanical, °C 750
180
Melting Completion (Liquidus), °C 1460
610
Melting Onset (Solidus), °C 1420
520
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 30
100
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
26
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
81

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 3.3
7.6
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 110
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 31 to 37
26
Strength to Weight: Bending, points 26 to 29
32
Thermal Diffusivity, mm2/s 8.1
41
Thermal Shock Resistance, points 30 to 35
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
77.9 to 90
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0 to 0.15
Copper (Cu), % 0
2.0 to 4.0
Iron (Fe), % 80.5 to 84.8
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0.4 to 0.9
0 to 0.55
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0 to 0.55
Nitrogen (N), % 0.020 to 0.040
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
8.0 to 11
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.25