MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. Grade 23 Titanium

EN 1.4938 stainless steel belongs to the iron alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 16 to 17
6.7 to 11
Fatigue Strength, MPa 390 to 520
470 to 500
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Shear Strength, MPa 540 to 630
540 to 570
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
930 to 940
Tensile Strength: Yield (Proof), MPa 640 to 870
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 750
340
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1420
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 30
7.1
Thermal Expansion, µm/m-K 11
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 3.3
38
Embodied Energy, MJ/kg 47
610
Embodied Water, L/kg 110
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
3430 to 3560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 31 to 37
58 to 59
Strength to Weight: Bending, points 26 to 29
48
Thermal Diffusivity, mm2/s 8.1
2.9
Thermal Shock Resistance, points 30 to 35
67 to 68

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0.080 to 0.15
0 to 0.080
Chromium (Cr), % 11 to 12.5
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 80.5 to 84.8
0 to 0.25
Manganese (Mn), % 0.4 to 0.9
0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0
Nitrogen (N), % 0.020 to 0.040
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0.25 to 0.4
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants