MakeItFrom.com
Menu (ESC)

EN 1.4959 Stainless Steel vs. EN 1.4941 Stainless Steel

Both EN 1.4959 stainless steel and EN 1.4941 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 75% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4959 stainless steel and the bottom bar is EN 1.4941 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
39
Fatigue Strength, MPa 170
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 430
400
Tensile Strength: Ultimate (UTS), MPa 630
590
Tensile Strength: Yield (Proof), MPa 190
210

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 510
520
Maximum Temperature: Mechanical, °C 1090
940
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1350
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
16
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
16
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.4
3.3
Embodied Energy, MJ/kg 76
47
Embodied Water, L/kg 200
140

Common Calculations

PREN (Pitting Resistance) 21
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
180
Resilience: Unit (Modulus of Resilience), kJ/m3 96
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 3.2
4.3
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 0.25 to 0.65
0
Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0.050 to 0.1
0.040 to 0.080
Chromium (Cr), % 19 to 22
17 to 19
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 39.4 to 50.5
65.1 to 73.6
Manganese (Mn), % 0 to 1.5
0 to 2.0
Nickel (Ni), % 30 to 34
9.0 to 12
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.015
0 to 0.035
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0.25 to 0.65
0.4 to 0.8