MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. EN 1.0449 Cast Steel

Both EN 1.4980 stainless steel and EN 1.0449 cast steel are iron alloys. They have 55% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is EN 1.0449 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
28
Fatigue Strength, MPa 410
170
Impact Strength: V-Notched Charpy, J 57
40
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 1030
460
Tensile Strength: Yield (Proof), MPa 680
220

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 920
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
52
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 26
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 6.0
1.4
Embodied Energy, MJ/kg 87
18
Embodied Water, L/kg 170
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 36
16
Strength to Weight: Bending, points 28
17
Thermal Diffusivity, mm2/s 3.5
14
Thermal Shock Resistance, points 22
14

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0 to 0.18
Chromium (Cr), % 13.5 to 16
0
Iron (Fe), % 49.2 to 58.5
98 to 100
Manganese (Mn), % 1.0 to 2.0
0 to 1.2
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.025
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0