MakeItFrom.com
Menu (ESC)

EN 1.4981 Stainless Steel vs. EN 1.4659 Stainless Steel

Both EN 1.4981 stainless steel and EN 1.4659 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 77% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4981 stainless steel and the bottom bar is EN 1.4659 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
260
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 39
49
Fatigue Strength, MPa 210
460
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
81
Shear Strength, MPa 420
640
Tensile Strength: Ultimate (UTS), MPa 610
900
Tensile Strength: Yield (Proof), MPa 240
480

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 520
440
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1440
1480
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 25
37
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 4.8
6.5
Embodied Energy, MJ/kg 67
89
Embodied Water, L/kg 150
220

Common Calculations

PREN (Pitting Resistance) 22
54
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
370
Resilience: Unit (Modulus of Resilience), kJ/m3 150
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
31
Strength to Weight: Bending, points 20
25
Thermal Diffusivity, mm2/s 4.3
3.2
Thermal Shock Resistance, points 14
19

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.020
Chromium (Cr), % 15.5 to 17.5
23 to 25
Copper (Cu), % 0
1.0 to 2.0
Iron (Fe), % 59.6 to 66.7
35.7 to 45.7
Manganese (Mn), % 0 to 1.5
2.0 to 4.0
Molybdenum (Mo), % 1.6 to 2.0
5.5 to 6.5
Nickel (Ni), % 15.5 to 17.5
21 to 23
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0.3 to 0.6
0 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5