MakeItFrom.com
Menu (ESC)

EN AC-21000 Aluminum vs. 5383 Aluminum

Both EN AC-21000 aluminum and 5383 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-21000 aluminum and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
85 to 110
Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 6.7
6.7 to 15
Fatigue Strength, MPa 100
130 to 200
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 340
310 to 370
Tensile Strength: Yield (Proof), MPa 240
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 670
650
Melting Onset (Solidus), °C 550
540
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
29
Electrical Conductivity: Equal Weight (Specific), % IACS 100
97

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
9.0
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 390
170 to 690
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 32
32 to 38
Strength to Weight: Bending, points 36
38 to 42
Thermal Diffusivity, mm2/s 49
51
Thermal Shock Resistance, points 15
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.5
92 to 95.3
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 4.2 to 5.0
0 to 0.2
Iron (Fe), % 0 to 0.35
0 to 0.25
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.15 to 0.35
4.0 to 5.2
Manganese (Mn), % 0 to 0.1
0.7 to 1.0
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.2
0 to 0.25
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0 to 0.1
0 to 0.15