MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. ASTM A356 Grade 9

Grade 23 titanium belongs to the titanium alloys classification, while ASTM A356 grade 9 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is ASTM A356 grade 9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7 to 11
17
Fatigue Strength, MPa 470 to 500
310
Poisson's Ratio 0.32
0.29
Reduction in Area, % 30
50
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 930 to 940
670
Tensile Strength: Yield (Proof), MPa 850 to 870
460

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Maximum Temperature: Mechanical, °C 340
440
Melting Completion (Liquidus), °C 1610
1470
Melting Onset (Solidus), °C 1560
1430
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
41
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
3.6
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
2.4
Embodied Energy, MJ/kg 610
33
Embodied Water, L/kg 200
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
100
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
570
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
24
Strength to Weight: Bending, points 48
22
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 67 to 68
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.2
Chromium (Cr), % 0
1.0 to 1.5
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
95.2 to 97.2
Manganese (Mn), % 0
0.5 to 0.9
Molybdenum (Mo), % 0
0.9 to 1.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.2 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0.2 to 0.35
Residuals, % 0 to 0.4
0