MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. AWS ER120S-1

Grade 24 titanium belongs to the titanium alloys classification, while AWS ER120S-1 belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
17
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 1010
930
Tensile Strength: Yield (Proof), MPa 940
830

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
46
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
9.0

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 43
1.9
Embodied Energy, MJ/kg 710
25
Embodied Water, L/kg 310
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
1850
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 63
33
Strength to Weight: Bending, points 50
27
Thermal Diffusivity, mm2/s 2.9
13
Thermal Shock Resistance, points 72
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0 to 0.1
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 0
0 to 0.6
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
92.4 to 96.1
Manganese (Mn), % 0
1.4 to 1.8
Molybdenum (Mo), % 0
0.3 to 0.65
Nickel (Ni), % 0
2.0 to 2.8
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.25 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 87.5 to 91
0 to 0.1
Vanadium (V), % 3.5 to 4.5
0 to 0.030
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.4
0 to 0.5