MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. C61400 Bronze

Grade 24 titanium belongs to the titanium alloys classification, while C61400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is C61400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
34 to 40
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Shear Strength, MPa 610
370 to 380
Tensile Strength: Ultimate (UTS), MPa 1010
540 to 570
Tensile Strength: Yield (Proof), MPa 940
220 to 270

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 340
220
Melting Completion (Liquidus), °C 1610
1050
Melting Onset (Solidus), °C 1560
1040
Specific Heat Capacity, J/kg-K 560
420
Thermal Conductivity, W/m-K 7.1
67
Thermal Expansion, µm/m-K 9.6
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
15

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.5
Embodied Carbon, kg CO2/kg material 43
3.0
Embodied Energy, MJ/kg 710
48
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
160 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
210 to 310
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 63
18 to 19
Strength to Weight: Bending, points 50
17 to 18
Thermal Diffusivity, mm2/s 2.9
19
Thermal Shock Resistance, points 72
18 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
6.0 to 8.0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
86 to 92.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
1.5 to 3.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.015
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0 to 0.4
0 to 0.5