MakeItFrom.com
Menu (ESC)

Grade 31 Titanium vs. ASTM Grade HC Steel

Grade 31 titanium belongs to the titanium alloys classification, while ASTM grade HC steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 31 titanium and the bottom bar is ASTM grade HC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
6.0
Fatigue Strength, MPa 300
96
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
80
Tensile Strength: Ultimate (UTS), MPa 510
430
Tensile Strength: Yield (Proof), MPa 450
200

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1410
Melting Onset (Solidus), °C 1610
1370
Specific Heat Capacity, J/kg-K 540
490
Thermal Conductivity, W/m-K 21
17
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.6

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.6
Embodied Carbon, kg CO2/kg material 36
2.8
Embodied Energy, MJ/kg 600
40
Embodied Water, L/kg 230
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
21
Resilience: Unit (Modulus of Resilience), kJ/m3 940
95
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
26
Strength to Weight: Axial, points 32
16
Strength to Weight: Bending, points 32
16
Thermal Diffusivity, mm2/s 8.5
4.5
Thermal Shock Resistance, points 39
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.5
Chromium (Cr), % 0
26 to 30
Cobalt (Co), % 0.2 to 0.8
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
61.9 to 74
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 4.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 97.9 to 99.76
0
Residuals, % 0 to 0.4
0