MakeItFrom.com
Menu (ESC)

Grade 31 Titanium vs. EN 1.4034 Stainless Steel

Grade 31 titanium belongs to the titanium alloys classification, while EN 1.4034 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 31 titanium and the bottom bar is EN 1.4034 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
11 to 14
Fatigue Strength, MPa 300
230 to 400
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 320
420 to 540
Tensile Strength: Ultimate (UTS), MPa 510
690 to 900
Tensile Strength: Yield (Proof), MPa 450
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 320
770
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1390
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
30
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
3.7

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 36
2.0
Embodied Energy, MJ/kg 600
27
Embodied Water, L/kg 230
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
81 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 940
400 to 1370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
25 to 32
Strength to Weight: Bending, points 32
22 to 27
Thermal Diffusivity, mm2/s 8.5
8.1
Thermal Shock Resistance, points 39
24 to 32

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0.43 to 0.5
Chromium (Cr), % 0
12.5 to 14.5
Cobalt (Co), % 0.2 to 0.8
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
83 to 87.1
Manganese (Mn), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 97.9 to 99.76
0
Residuals, % 0 to 0.4
0