MakeItFrom.com
Menu (ESC)

Hot Finished N08800 Stainless Steel vs. Hot Rolled SAE-AISI 1144

Both hot finished N08800 stainless steel and hot rolled SAE-AISI 1144 are iron alloys. Both are furnished in the hot worked condition. They have 46% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is hot finished N08800 stainless steel and the bottom bar is hot rolled SAE-AISI 1144.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
17
Fatigue Strength, MPa 150
280
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
72
Shear Strength, MPa 340
460
Tensile Strength: Ultimate (UTS), MPa 500
750
Tensile Strength: Yield (Proof), MPa 190
420

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1390
1450
Melting Onset (Solidus), °C 1360
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
51
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.9
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.3
1.4
Embodied Energy, MJ/kg 76
19
Embodied Water, L/kg 200
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 96
480
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
27
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 3.0
14
Thermal Shock Resistance, points 13
22

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.1
0.4 to 0.48
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 39.5 to 50.7
97.5 to 98
Manganese (Mn), % 0 to 1.5
1.4 to 1.7
Nickel (Ni), % 30 to 35
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0.24 to 0.33
Titanium (Ti), % 0.15 to 0.6
0