MakeItFrom.com
Menu (ESC)

Nickel 30 vs. AISI 415 Stainless Steel

Nickel 30 belongs to the nickel alloys classification, while AISI 415 stainless steel belongs to the iron alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 30 and the bottom bar is AISI 415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
17
Fatigue Strength, MPa 200
430
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 82
76
Shear Strength, MPa 440
550
Tensile Strength: Ultimate (UTS), MPa 660
900
Tensile Strength: Yield (Proof), MPa 270
700

Thermal Properties

Latent Heat of Fusion, J/g 320
270
Maximum Temperature: Mechanical, °C 1020
780
Melting Completion (Liquidus), °C 1480
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 10
24
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 60
11
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 9.4
2.5
Embodied Energy, MJ/kg 130
35
Embodied Water, L/kg 290
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
140
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 22
32
Strength to Weight: Bending, points 20
26
Thermal Diffusivity, mm2/s 2.7
6.4
Thermal Shock Resistance, points 18
33

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 28 to 31.5
11.5 to 14
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
0
Iron (Fe), % 13 to 17
77.8 to 84
Manganese (Mn), % 0 to 0.030
0.5 to 1.0
Molybdenum (Mo), % 4.0 to 6.0
0.5 to 1.0
Nickel (Ni), % 30.2 to 52.2
3.5 to 5.5
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.8
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 1.5 to 4.0
0