MakeItFrom.com
Menu (ESC)

C18700 Copper vs. S43037 Stainless Steel

C18700 copper belongs to the copper alloys classification, while S43037 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C18700 copper and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 9.6
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 170 to 190
260
Tensile Strength: Ultimate (UTS), MPa 290 to 330
410
Tensile Strength: Yield (Proof), MPa 230 to 250
230

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
880
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 950
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 380
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.0
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.3
Embodied Energy, MJ/kg 41
32
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
88
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
130
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
15
Strength to Weight: Bending, points 11 to 12
16
Thermal Diffusivity, mm2/s 110
6.7
Thermal Shock Resistance, points 10 to 12
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 19
Copper (Cu), % 98 to 99.2
0
Iron (Fe), % 0
77.9 to 83.9
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.1 to 1.0
Residuals, % 0 to 0.5
0