MakeItFrom.com
Menu (ESC)

C34500 Brass vs. N06920 Nickel

C34500 brass belongs to the copper alloys classification, while N06920 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C34500 brass and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 12 to 28
39
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
82
Shear Strength, MPa 220 to 260
500
Tensile Strength: Ultimate (UTS), MPa 340 to 430
730
Tensile Strength: Yield (Proof), MPa 120 to 180
270

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
990
Melting Completion (Liquidus), °C 910
1500
Melting Onset (Solidus), °C 890
1440
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
55
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 2.6
9.4
Embodied Energy, MJ/kg 45
130
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
230
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 160
180
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 12 to 15
24
Strength to Weight: Bending, points 13 to 16
21
Thermal Diffusivity, mm2/s 37
2.8
Thermal Shock Resistance, points 11 to 14
19

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.15
17 to 20
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
36.9 to 53.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 32 to 36.5
0
Residuals, % 0 to 0.4
0