MakeItFrom.com
Menu (ESC)

C52400 Bronze vs. AWS E33-31

C52400 bronze belongs to the copper alloys classification, while AWS E33-31 belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C52400 bronze and the bottom bar is AWS E33-31.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 41
81
Tensile Strength: Ultimate (UTS), MPa 450 to 880
810

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Melting Completion (Liquidus), °C 1000
1380
Melting Onset (Solidus), °C 840
1330
Specific Heat Capacity, J/kg-K 370
480
Thermal Expansion, µm/m-K 18
14

Otherwise Unclassified Properties

Base Metal Price, % relative 35
36
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.6
6.0
Embodied Energy, MJ/kg 58
86
Embodied Water, L/kg 390
260

Common Calculations

Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 14 to 28
28
Strength to Weight: Bending, points 15 to 23
24
Thermal Shock Resistance, points 17 to 32
19

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
31 to 35
Copper (Cu), % 87.8 to 91
0.4 to 0.8
Iron (Fe), % 0 to 0.1
24.7 to 34.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0.030 to 0.35
0 to 0.020
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0