MakeItFrom.com
Menu (ESC)

C87200 Bronze vs. EN 1.1221 Steel

C87200 bronze belongs to the copper alloys classification, while EN 1.1221 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C87200 bronze and the bottom bar is EN 1.1221 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
210 to 250
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 30
10 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
72
Tensile Strength: Ultimate (UTS), MPa 380
730 to 870
Tensile Strength: Yield (Proof), MPa 170
390 to 550

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 970
1460
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 28
48
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.1
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 44
19
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
67 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 130
410 to 800
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
26 to 31
Strength to Weight: Bending, points 14
23 to 26
Thermal Diffusivity, mm2/s 8.0
13
Thermal Shock Resistance, points 14
23 to 28

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0
0.57 to 0.65
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 89 to 99
0
Iron (Fe), % 0 to 2.5
97.1 to 98.8
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 1.5
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.5
0 to 0.035
Silicon (Si), % 1.0 to 5.0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 0 to 5.0
0