MakeItFrom.com
Menu (ESC)

C92500 Bronze vs. EN 1.0308 Steel

C92500 bronze belongs to the copper alloys classification, while EN 1.0308 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C92500 bronze and the bottom bar is EN 1.0308 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
7.8 to 28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 310
360 to 440
Tensile Strength: Yield (Proof), MPa 190
190 to 340

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 63
51
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 35
1.8
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.7
1.4
Embodied Energy, MJ/kg 61
18
Embodied Water, L/kg 390
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
32 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 170
93 to 300
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.8
13 to 16
Strength to Weight: Bending, points 12
14 to 16
Thermal Diffusivity, mm2/s 20
14
Thermal Shock Resistance, points 12
11 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.17
Copper (Cu), % 85 to 88
0
Iron (Fe), % 0 to 0.3
98.2 to 100
Lead (Pb), % 1.0 to 1.5
0
Manganese (Mn), % 0
0 to 1.2
Nickel (Ni), % 0.8 to 1.5
0
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.045
Tin (Sn), % 10 to 12
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.7
0