MakeItFrom.com
Menu (ESC)

C95500 Bronze vs. C82000 Copper

Both C95500 bronze and C82000 copper are copper alloys. They have 81% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95500 bronze and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 8.4 to 10
8.0 to 20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
45
Tensile Strength: Ultimate (UTS), MPa 700 to 850
350 to 690
Tensile Strength: Yield (Proof), MPa 320 to 470
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 230
220
Maximum Temperature: Mechanical, °C 230
220
Melting Completion (Liquidus), °C 1050
1090
Melting Onset (Solidus), °C 1040
970
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 42
260
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
45
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
46

Otherwise Unclassified Properties

Base Metal Price, % relative 28
60
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 3.5
5.0
Embodied Energy, MJ/kg 57
77
Embodied Water, L/kg 390
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 61
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 950
80 to 1120
Stiffness to Weight: Axial, points 8.0
7.5
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 24 to 29
11 to 22
Strength to Weight: Bending, points 21 to 24
12 to 20
Thermal Diffusivity, mm2/s 11
76
Thermal Shock Resistance, points 24 to 29
12 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 78 to 84
95.2 to 97.4
Iron (Fe), % 3.0 to 5.0
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 3.5
0
Nickel (Ni), % 3.0 to 5.5
0 to 0.2
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.5

Comparable Variants