MakeItFrom.com
Menu (ESC)

N06975 Nickel vs. 2025 Aluminum

N06975 nickel belongs to the nickel alloys classification, while 2025 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06975 nickel and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 45
15
Fatigue Strength, MPa 210
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 470
240
Tensile Strength: Ultimate (UTS), MPa 660
400
Tensile Strength: Yield (Proof), MPa 250
260

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1000
190
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
520
Specific Heat Capacity, J/kg-K 460
870
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 50
10
Density, g/cm3 8.3
3.0
Embodied Carbon, kg CO2/kg material 8.9
7.9
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
55
Resilience: Unit (Modulus of Resilience), kJ/m3 150
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 22
37
Strength to Weight: Bending, points 20
40
Thermal Shock Resistance, points 18
18

Alloy Composition

Aluminum (Al), % 0
90.9 to 95.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 26
0 to 0.1
Copper (Cu), % 0.7 to 1.2
3.9 to 5.0
Iron (Fe), % 10.2 to 23.6
0 to 1.0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0.4 to 1.2
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 47 to 52
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.5 to 1.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.7 to 1.5
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15