MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. EN 1.8965 Steel

Both N08020 stainless steel and EN 1.8965 steel are iron alloys. They have a modest 40% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is EN 1.8965 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 15 to 34
16
Fatigue Strength, MPa 210 to 240
220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 380 to 410
350
Tensile Strength: Ultimate (UTS), MPa 610 to 620
570
Tensile Strength: Yield (Proof), MPa 270 to 420
340

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
420
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 12
39
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 38
3.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 6.6
1.8
Embodied Energy, MJ/kg 92
25
Embodied Water, L/kg 220
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
78
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
20
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 3.2
10
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Carbon (C), % 0 to 0.070
0 to 0.19
Chromium (Cr), % 19 to 21
0.35 to 0.85
Copper (Cu), % 3.0 to 4.0
0.2 to 0.6
Iron (Fe), % 29.9 to 44
94.6 to 99
Manganese (Mn), % 0 to 2.0
0.45 to 1.6
Molybdenum (Mo), % 2.0 to 3.0
0 to 0.35
Nickel (Ni), % 32 to 38
0 to 0.7
Niobium (Nb), % 0 to 1.0
0 to 0.065
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.035
0 to 0.035
Titanium (Ti), % 0
0 to 0.12
Vanadium (V), % 0
0 to 0.14
Zirconium (Zr), % 0
0 to 0.17