MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. C32000 Brass

N08330 stainless steel belongs to the iron alloys classification, while C32000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
6.8 to 29
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
41
Shear Strength, MPa 360
180 to 280
Tensile Strength: Ultimate (UTS), MPa 550
270 to 470
Tensile Strength: Yield (Proof), MPa 230
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1050
170
Melting Completion (Liquidus), °C 1390
1020
Melting Onset (Solidus), °C 1340
990
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
36
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
37

Otherwise Unclassified Properties

Base Metal Price, % relative 32
28
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 5.4
2.6
Embodied Energy, MJ/kg 77
42
Embodied Water, L/kg 190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 140
28 to 680
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19
8.8 to 15
Strength to Weight: Bending, points 18
11 to 16
Thermal Diffusivity, mm2/s 3.1
47
Thermal Shock Resistance, points 13
9.5 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 1.0
83.5 to 86.5
Iron (Fe), % 38.3 to 48.3
0 to 0.1
Lead (Pb), % 0 to 0.0050
1.5 to 2.2
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 34 to 37
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.75 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0 to 0.025
0
Zinc (Zn), % 0
10.6 to 15
Residuals, % 0
0 to 0.4