MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. C92900 Bronze

N08330 stainless steel belongs to the iron alloys classification, while C92900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
84
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
9.1
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 550
350
Tensile Strength: Yield (Proof), MPa 230
190

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1050
170
Melting Completion (Liquidus), °C 1390
1030
Melting Onset (Solidus), °C 1340
860
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 12
58
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 32
35
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 5.4
3.8
Embodied Energy, MJ/kg 77
61
Embodied Water, L/kg 190
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
27
Resilience: Unit (Modulus of Resilience), kJ/m3 140
170
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19
11
Strength to Weight: Bending, points 18
13
Thermal Diffusivity, mm2/s 3.1
18
Thermal Shock Resistance, points 13
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 1.0
82 to 86
Iron (Fe), % 38.3 to 48.3
0 to 0.2
Lead (Pb), % 0 to 0.0050
2.0 to 3.2
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 34 to 37
2.8 to 4.0
Phosphorus (P), % 0 to 0.030
0 to 1.5
Silicon (Si), % 0.75 to 1.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0 to 0.025
9.0 to 11
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.7