MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. 5383 Aluminum

N08800 stainless steel belongs to the iron alloys classification, while 5383 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 4.5 to 34
6.7 to 15
Fatigue Strength, MPa 150 to 390
130 to 200
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 340 to 580
190 to 220
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
310 to 370
Tensile Strength: Yield (Proof), MPa 190 to 830
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Corrosion, °C 490
65
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1360
540
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 14
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
29
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
97

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 5.3
9.0
Embodied Energy, MJ/kg 76
160
Embodied Water, L/kg 200
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
170 to 690
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 18 to 35
32 to 38
Strength to Weight: Bending, points 18 to 28
38 to 42
Thermal Diffusivity, mm2/s 3.0
51
Thermal Shock Resistance, points 13 to 25
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.15 to 0.6
92 to 95.3
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 23
0 to 0.25
Copper (Cu), % 0 to 0.75
0 to 0.2
Iron (Fe), % 39.5 to 50.7
0 to 0.25
Magnesium (Mg), % 0
4.0 to 5.2
Manganese (Mn), % 0 to 1.5
0.7 to 1.0
Nickel (Ni), % 30 to 35
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
0 to 0.15
Zinc (Zn), % 0
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants