MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. C19200 Copper

R30155 cobalt belongs to the iron alloys classification, while C19200 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 34
2.0 to 35
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 81
44
Shear Strength, MPa 570
190 to 300
Tensile Strength: Ultimate (UTS), MPa 850
280 to 530
Tensile Strength: Yield (Proof), MPa 390
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 12
240
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Base Metal Price, % relative 80
30
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 9.7
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 300
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 370
42 to 1120
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 28
8.8 to 17
Strength to Weight: Bending, points 24
11 to 16
Thermal Diffusivity, mm2/s 3.2
69
Thermal Shock Resistance, points 21
10 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
98.5 to 99.19
Iron (Fe), % 24.3 to 36.2
0.8 to 1.2
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0.010 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0.75 to 1.3
0
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2