MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. AISI 403 Stainless Steel

Both R30556 alloy and AISI 403 stainless steel are iron alloys. They have 43% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is R30556 alloy and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
16 to 25
Fatigue Strength, MPa 320
200 to 340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
76
Shear Strength, MPa 550
340 to 480
Tensile Strength: Ultimate (UTS), MPa 780
530 to 780
Tensile Strength: Yield (Proof), MPa 350
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 450
390
Maximum Temperature: Mechanical, °C 1100
740
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1330
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 11
28
Thermal Expansion, µm/m-K 15
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 70
6.5
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 8.7
1.9
Embodied Energy, MJ/kg 130
27
Embodied Water, L/kg 300
99

Common Calculations

PREN (Pitting Resistance) 40
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 290
210 to 840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 26
19 to 28
Strength to Weight: Bending, points 22
19 to 24
Thermal Diffusivity, mm2/s 2.9
7.6
Thermal Shock Resistance, points 18
20 to 29

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0 to 0.15
Chromium (Cr), % 21 to 23
11.5 to 13
Cobalt (Co), % 16 to 21
0
Iron (Fe), % 20.4 to 38.2
84.7 to 88.5
Lanthanum (La), % 0.0050 to 0.1
0
Manganese (Mn), % 0.5 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
0 to 0.6
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0.2 to 0.8
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Tantalum (Ta), % 0.3 to 1.3
0
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0