MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. EN 1.4003 Stainless Steel

Both S15500 stainless steel and EN 1.4003 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is EN 1.4003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 6.8 to 16
22
Fatigue Strength, MPa 350 to 650
210
Impact Strength: V-Notched Charpy, J 7.8 to 53
67
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 540 to 870
340
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
540
Tensile Strength: Yield (Proof), MPa 590 to 1310
320

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 440
390
Maximum Temperature: Mechanical, °C 820
720
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
25
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
6.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 39
27
Embodied Water, L/kg 130
97

Common Calculations

PREN (Pitting Resistance) 15
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
100
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 53
19
Strength to Weight: Bending, points 26 to 37
19
Thermal Diffusivity, mm2/s 4.6
6.7
Thermal Shock Resistance, points 30 to 50
19

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.030
Chromium (Cr), % 14 to 15.5
10.5 to 12.5
Copper (Cu), % 2.5 to 4.5
0
Iron (Fe), % 71.9 to 79.9
83.9 to 89.2
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 3.5 to 5.5
0.3 to 1.0
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015