MakeItFrom.com
Menu (ESC)

EN 1.4003 (X2CrNi12) Stainless Steel

EN 1.4003 stainless steel is a ferritic stainless steel formulated for primary forming into wrought products. Cited properties are appropriate for the annealed condition. 1.4003 is the EN numeric designation for this material. X2CrNi12 is the EN chemical designation.

It has a fairly low base cost and a fairly low embodied energy among wrought ferritic stainless steels.

The graph bars on the material properties cards below compare EN 1.4003 stainless steel to: wrought ferritic stainless steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

180

Elastic (Young's, Tensile) Modulus

190 GPa 28 x 106 psi

Elongation at Break

22 %

Fatigue Strength

210 MPa 31 x 103 psi

Impact Strength: V-Notched Charpy

67 J 50 ft-lb

Poisson's Ratio

0.28

Shear Modulus

76 GPa 11 x 106 psi

Shear Strength

340 MPa 50 x 103 psi

Tensile Strength: Ultimate (UTS)

540 MPa 79 x 103 psi

Tensile Strength: Yield (Proof)

320 MPa 46 x 103 psi

Thermal Properties

Latent Heat of Fusion

270 J/g

Maximum Temperature: Corrosion

390 °C 730 °F

Maximum Temperature: Mechanical

720 °C 1320 °F

Melting Completion (Liquidus)

1440 °C 2630 °F

Melting Onset (Solidus)

1400 °C 2560 °F

Specific Heat Capacity

480 J/kg-K 0.11 BTU/lb-°F

Thermal Conductivity

25 W/m-K 14 BTU/h-ft-°F

Thermal Expansion

10 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

2.9 % IACS

Electrical Conductivity: Equal Weight (Specific)

3.3 % IACS

Otherwise Unclassified Properties

Base Metal Price

6.5 % relative

Density

7.8 g/cm3 480 lb/ft3

Embodied Carbon

1.9 kg CO2/kg material

Embodied Energy

27 MJ/kg 12 x 103 BTU/lb

Embodied Water

97 L/kg 12 gal/lb

Common Calculations

PREN (Pitting Resistance)

12

Resilience: Ultimate (Unit Rupture Work)

100 MJ/m3

Resilience: Unit (Modulus of Resilience)

260 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

25 points

Strength to Weight: Axial

19 points

Strength to Weight: Bending

19 points

Thermal Diffusivity

6.7 mm2/s

Thermal Shock Resistance

19 points

Alloy Composition

Among wrought stainless steels, the composition of EN 1.4003 stainless steel is notable for containing comparatively high amounts of chromium (Cr) and manganese (Mn). Chromium is the defining alloying element of stainless steel. Higher chromium content imparts additional corrosion resistance. Manganese is used to improve ductility at elevated temperatures. It also permits a higher nitrogen content than would otherwise be possible.

Iron (Fe) 83.9 to 89.2
Chromium (Cr) 10.5 to 12.5
Manganese (Mn) 0 to 1.5
Nickel (Ni) 0.3 to 1.0
Silicon (Si) 0 to 1.0
Phosphorus (P) 0 to 0.040
Carbon (C) 0 to 0.030
Nitrogen (N) 0 to 0.030
Sulfur (S) 0 to 0.015

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Similar Alloys

Further Reading

EN 10272: Stainless steel bars for pressure purposes

EN 10088-2: Stainless steels - Part 2: Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for general purposes

Machining of Stainless Steels and Super Alloys: Traditional and Nontraditional Techniques, Helmi A. Youssef, 2016

EN 10088-3: Stainless steels - Part 3: Technical delivery conditions for semi-finished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purposes

EN 10088-1: Stainless steels - Part 1: List of stainless steels

Corrosion of Stainless Steels, A. John Sedriks, 1996

Advances in Stainless Steels, Baldev Raj et al. (editors), 2010

CRC Materials Science and Engineering Handbook, 4th ed., James F. Shackelford et al. (editors), 2015