MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. Grade 12 Titanium

S15500 stainless steel belongs to the iron alloys classification, while grade 12 titanium belongs to the titanium alloys. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is grade 12 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
170
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.8 to 16
21
Fatigue Strength, MPa 350 to 650
280
Poisson's Ratio 0.28
0.32
Reduction in Area, % 17 to 40
28
Shear Modulus, GPa 75
39
Shear Strength, MPa 540 to 870
330
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
530
Tensile Strength: Yield (Proof), MPa 590 to 1310
410

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 820
320
Melting Completion (Liquidus), °C 1430
1660
Melting Onset (Solidus), °C 1380
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 17
21
Thermal Expansion, µm/m-K 11
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.7
31
Embodied Energy, MJ/kg 39
500
Embodied Water, L/kg 130
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 32 to 53
32
Strength to Weight: Bending, points 26 to 37
32
Thermal Diffusivity, mm2/s 4.6
8.5
Thermal Shock Resistance, points 30 to 50
37

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.070
0 to 0.080
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 71.9 to 79.9
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 3.5 to 5.5
0.6 to 0.9
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
97.6 to 99.2
Residuals, % 0
0 to 0.4