MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. 333.0 Aluminum

S17400 stainless steel belongs to the iron alloys classification, while 333.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is 333.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 440
90 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 11 to 21
1.0 to 2.0
Fatigue Strength, MPa 380 to 670
83 to 100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
28
Shear Strength, MPa 570 to 830
190 to 230
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
230 to 280
Tensile Strength: Yield (Proof), MPa 580 to 1250
130 to 210

Thermal Properties

Latent Heat of Fusion, J/g 280
520
Maximum Temperature: Mechanical, °C 850
170
Melting Completion (Liquidus), °C 1440
590
Melting Onset (Solidus), °C 1400
530
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 17
100 to 140
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
26 to 35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
83 to 110

Otherwise Unclassified Properties

Base Metal Price, % relative 14
10
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 2.7
7.6
Embodied Energy, MJ/kg 39
140
Embodied Water, L/kg 130
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
2.1 to 4.6
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
120 to 290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 32 to 49
22 to 27
Strength to Weight: Bending, points 27 to 35
29 to 34
Thermal Diffusivity, mm2/s 4.5
42 to 57
Thermal Shock Resistance, points 30 to 46
11 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
81.8 to 89
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
3.0 to 4.0
Iron (Fe), % 70.4 to 78.9
0 to 1.0
Magnesium (Mg), % 0
0.050 to 0.5
Manganese (Mn), % 0 to 1.0
0 to 0.5
Nickel (Ni), % 3.0 to 5.0
0 to 0.5
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
8.0 to 10
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5