MakeItFrom.com
Menu (ESC)

S32050 Stainless Steel vs. EN 2.4668 Nickel

S32050 stainless steel belongs to the iron alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. They have 62% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S32050 stainless steel and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 46
14
Fatigue Strength, MPa 340
590
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
75
Shear Strength, MPa 540
840
Tensile Strength: Ultimate (UTS), MPa 770
1390
Tensile Strength: Yield (Proof), MPa 370
1160

Thermal Properties

Latent Heat of Fusion, J/g 310
310
Maximum Temperature: Mechanical, °C 1100
980
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 12
13
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
75
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 6.0
13
Embodied Energy, MJ/kg 81
190
Embodied Water, L/kg 210
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
180
Resilience: Unit (Modulus of Resilience), kJ/m3 330
3490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 27
46
Strength to Weight: Bending, points 23
33
Thermal Diffusivity, mm2/s 3.3
3.5
Thermal Shock Resistance, points 17
40

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0 to 0.030
0.020 to 0.080
Chromium (Cr), % 22 to 24
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.4
0 to 0.3
Iron (Fe), % 43.1 to 51.8
11.2 to 24.6
Manganese (Mn), % 0 to 1.5
0 to 0.35
Molybdenum (Mo), % 6.0 to 6.6
2.8 to 3.3
Nickel (Ni), % 20 to 23
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Nitrogen (N), % 0.21 to 0.32
0
Phosphorus (P), % 0 to 0.035
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0
0.6 to 1.2