MakeItFrom.com
Menu (ESC)

S32506 Stainless Steel vs. EN 1.4613 Stainless Steel

Both S32506 stainless steel and EN 1.4613 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32506 stainless steel and the bottom bar is EN 1.4613 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
21
Fatigue Strength, MPa 330
180
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 81
79
Shear Strength, MPa 440
330
Tensile Strength: Ultimate (UTS), MPa 710
530
Tensile Strength: Yield (Proof), MPa 500
280

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
550
Maximum Temperature: Mechanical, °C 1100
1050
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
19
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 20
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.9
2.6
Embodied Energy, MJ/kg 54
38
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 38
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
91
Resilience: Unit (Modulus of Resilience), kJ/m3 620
190
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 4.3
5.2
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 24 to 26
22 to 25
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 60.8 to 67.4
70.3 to 77.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 3.0 to 3.5
0 to 0.5
Nickel (Ni), % 5.5 to 7.2
0 to 0.5
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 0.9
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.050
Titanium (Ti), % 0
0.2 to 1.0
Tungsten (W), % 0.050 to 0.3
0