MakeItFrom.com
Menu (ESC)

S32506 Stainless Steel vs. C92900 Bronze

S32506 stainless steel belongs to the iron alloys classification, while C92900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32506 stainless steel and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
84
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
9.1
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 710
350
Tensile Strength: Yield (Proof), MPa 500
190

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
1030
Melting Onset (Solidus), °C 1400
860
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 16
58
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 20
35
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.9
3.8
Embodied Energy, MJ/kg 54
61
Embodied Water, L/kg 180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
27
Resilience: Unit (Modulus of Resilience), kJ/m3 620
170
Stiffness to Weight: Axial, points 15
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
11
Strength to Weight: Bending, points 23
13
Thermal Diffusivity, mm2/s 4.3
18
Thermal Shock Resistance, points 19
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
82 to 86
Iron (Fe), % 60.8 to 67.4
0 to 0.2
Lead (Pb), % 0
2.0 to 3.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 5.5 to 7.2
2.8 to 4.0
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 0.9
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Tungsten (W), % 0.050 to 0.3
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.7