MakeItFrom.com
Menu (ESC)

S32654 Stainless Steel vs. 296.0 Aluminum

S32654 stainless steel belongs to the iron alloys classification, while 296.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32654 stainless steel and the bottom bar is 296.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
75 to 90
Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 45
3.2 to 7.1
Fatigue Strength, MPa 450
47 to 70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
27
Tensile Strength: Ultimate (UTS), MPa 850
260 to 270
Tensile Strength: Yield (Proof), MPa 490
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 310
420
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1410
540
Specific Heat Capacity, J/kg-K 460
870
Thermal Conductivity, W/m-K 11
130 to 150
Thermal Expansion, µm/m-K 15
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
33 to 37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
99 to 110

Otherwise Unclassified Properties

Base Metal Price, % relative 34
11
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 6.4
7.8
Embodied Energy, MJ/kg 87
150
Embodied Water, L/kg 220
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
7.6 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 570
110 to 220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 29
24 to 25
Strength to Weight: Bending, points 25
30 to 31
Thermal Diffusivity, mm2/s 2.9
51 to 56
Thermal Shock Resistance, points 19
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
89 to 94
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 24 to 25
0
Copper (Cu), % 0.3 to 0.6
4.0 to 5.0
Iron (Fe), % 38.3 to 45.3
0 to 1.2
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 2.0 to 4.0
0 to 0.35
Molybdenum (Mo), % 7.0 to 8.0
0
Nickel (Ni), % 21 to 23
0 to 0.35
Nitrogen (N), % 0.45 to 0.55
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
2.0 to 3.0
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.35